Acta Crystallographica Section C

Crystal Structure

Communications
ISSN 0108-2701

A three-dimensional supramolecular network built with the zigzag chain complex bis(5-carboxy-1H-imidazole-4-carboxylato)copper(II)

Yue-Ling Bai, Jun Tao,* Rong-Bin Huang and Lan-Sun Zheng

Department of Chemistry, Xiamen University, Xiamen 361005, People's Republic of China
Correspondence e-mail: taojun@jingxian.xmu.edu.cn

Received 17 December 2004
Accepted 22 December 2004
Online 22 January 2005
In the title complex, poly[copper(II)-di- μ-5-carboxy- $1 H$ -imidazole-4-carboxylato], $\quad\left[\mathrm{Cu}\left(\mathrm{C}_{5} \mathrm{H}_{3} \mathrm{~N}_{2} \mathrm{O}_{4}\right)_{2}\right]_{n}$ or $\left[\mathrm{Cu}\left(\mathrm{H}_{2^{-}}\right.\right.$ Imda) $\left.)_{2}\right]_{n}$, each imidazole moiety is bonded to the Cu atom via O and N atoms to give a square-planar coordination $[\mathrm{Cu}-$ $\mathrm{O}=2.014$ (2) and 2.016 (2) \AA, and $\mathrm{Cu}-\mathrm{N}=1.982$ (3) and 1.992 (2) \AA §. The distorted square-pyramidal geometry at the Cu atom results from coordination to an adjacent O atom $[\mathrm{Cu}-\mathrm{O}=2.305(2) \AA$], which generates zigzag chains. There is a sixth, weaker, octahedral coordination to the Cu atom from an inversion-related O atom $[\mathrm{Cu}-\mathrm{O}=3.090(2) \AA$, which links the chains into sheets in the (100) plane. Imidazole moieties in the sheets are linked in the [100] direction by pairs of $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds, thus generating a three-dimensional network.

Comment

Imidazole-4,5-dicarboxylic acid $\left(\mathrm{H}_{3} \mathrm{Imda}\right)$ can form three types of anions, namely $\mathrm{Imda}^{3-}, \mathrm{HImda}^{2-}$ and $\mathrm{H}_{2} \mathrm{Imda}^{-}$, while interacting with metal ions. In the crystal structure of a mixedvalence $\mathrm{Co}^{\mathrm{II}, \mathrm{III}}$ complex, $\mathrm{Na}_{2}\left[\mathrm{Co}_{4}(\operatorname{Imda})_{4}\left(2,2^{\prime} \text {-bipy }\right)_{4}\right] \cdot 12 \mathrm{H}_{2} \mathrm{O}$ ($2,2^{\prime}$-bipy is $2,2^{\prime}$-bipyridine; Wang et al., 2004), the Imda^{3-} trianion links adjacent Co atoms through both bidentate CO_{2} groups and an imidazole entity into a square plane, which is capped at each corner by $2,2^{\prime}$-bipy ligands; adjacent square planes are linked by water- and CO_{2}-bound Na^{+}cations into a one-dimensional motif. The dinuclear mixed-valence $\mathrm{Mn}^{\mathrm{III}, \mathrm{IV}}$ complex Mn_{2} (dtbsalpn) $)_{2}($ Imda $)\left\{\mathrm{H}_{2} \mathrm{dtbsalpn}\right.$ is 1,3 -bis[(3,5 -di-tert-butylsalicylidene)amino]propane\} adopts a similar coordination pattern (Rajendiran et al., 2003). Recently, the crystal structures of $M\left(\mathrm{H}_{2} \mathrm{Imda}\right)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}(M=\mathrm{Co}, \mathrm{Cu}$ and Zn$)$, in which the $\mathrm{H}_{2} \mathrm{Imda}{ }^{-}$monoanion coordinates to the metal ion via only one N atom and one O atom of the monodentate CO_{2} group, have been reported (Shimizu et al., 2004).

We have obtained metal-cluster complexes by using mixed N - and O -atom ligands under hydrothermal conditions (Yin et
al., 2004). We employed the H_{3} Imda ligand to react with $\mathrm{Cu}^{\text {II }}$ in the presence of NaOH in the hope of synthesizing a new metal-cluster complex, but this reaction resulted in the title complex, $\left[\mathrm{Cu}\left(\mathrm{H}_{2} \mathrm{Imda}\right)_{2}\right]_{n},(\mathrm{I})$, being obtained serendipitously.

The title complex is shown in Fig. 1, with selected geometric parameters listed in Table 1. Both $\mathrm{H}_{2} \mathrm{Imda}^{-}$monoanions chelate the Cu atom in a syn mode, which does not resemble that found in the $M\left(\mathrm{H}_{2} \operatorname{Imda}\right)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}(M=\mathrm{Co}, \mathrm{Cu}$ and Zn$)$ complexes (Shimizu et al., 2004). In the asymmetric unit in (I), the coordination geometry of the Cu atom may be described as slightly distorted square pyramidal, with two O atoms (O 1 and O11) of monodentate CO_{2} groups and two N atoms (N3 and N 13) of two $\mathrm{H}_{2} \mathrm{Imda}{ }^{-}$imidazole moieties in the basal plane, and an O atom $\left[\mathrm{O} 4\left(x+\frac{1}{2},-y+\frac{3}{2}, z+\frac{1}{2}\right)\right]$ of a monodentate CO_{2} group of an adjacent H_{2} Imda ${ }^{-}$species occupying

Figure 1
A segment of the structure of the title complex, with displacement ellipsoids drawn at the 30% probability level. [Symmetry codes: (A) $-\frac{1}{2}+x, \frac{3}{2}-y,-\frac{1}{2}+z ;(B) \frac{1}{2}+x, \frac{3}{2}-y, \frac{1}{2}+z ;(C) 1-x, 1-y, 1-z ;(D)$ $\frac{3}{2}-x,-\frac{1}{2}+y, \frac{3}{2}-z ;(E) \frac{1}{2}-x,-\frac{1}{2}+y, \frac{1}{2}-z$.]
the apical position. There is a sixth, weaker, $\mathrm{Cu} \cdots \mathrm{O}$ coordination to atom $\mathrm{O} 1^{\text {ii }}$ in the inversion-related complex at $(-x+1,-y+1,-z+1)$. Such $[4+1+1]$-coordination is not uncommon; a search of the Cambridge Structural Database

Figure 2
A view of the two-dimensional network in the (100) plane. Atoms labeled with an asterisk (*) or a hash (\#) are at the symmetry positions ($1-x$, $1-y, 1-z)$ and $\left(-\frac{1}{2}+x, \frac{3}{2}-y,-\frac{1}{2}+z\right)$, respectively.

Figure 3
A view showing the chain of $\mathrm{Cu}\left(\mathrm{H}_{2} \mathrm{Imda}\right)_{2}$ moieties along [100] linked by pairs of $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds. Atoms labeled with an asterisk $(*)$ are at the symmetry position $(-1+x, y, z)$.
(July 2004 release; Allen, 2002) for compounds with octahedral coordination at the Cu atom in compounds with a $\mathrm{CuN}_{2} \mathrm{O}_{4}$ moiety and the sixth $\mathrm{Cu}-\mathrm{O}$ coordination distance in the ranges $2.6-2.8,2.8-3.0,3.0-3.2$ and $3.2-3.4 \AA$ yielded 51 , 72, 62 and 61 hits, respectively. Atoms O1, O11, N3 and N13 form a plane with a mean deviation of $0.009 \AA$; atom Cu 1 lies 0.1218 (13) \AA from this plane, and the remaining two atoms, $\mathrm{O} 4 B$ and O1C (see Fig. 1 for symmetry codes), lie 2.419 (3) and -2.873 (4) \AA, respectively, from the basal plane. The two carboxyl hydroxy groups form intramolecular $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds to adjacent carboxyl O atoms (Table 2).

One $\mathrm{H}_{2} \mathrm{Imda}^{-}$monoanion (containing atoms $\mathrm{N} 3, \mathrm{O} 1$ and $\mathrm{O} 4)$ uses both CO_{2} groups and an imidazole N atom to link to adjacent Cu atoms to form a zigzag chain via an n-glide operation, both CO_{2} groups being monodentate. Adjacent chains are then linked by inversion-related pairs of the weaker $\mathrm{Cu} \cdots \mathrm{O} 1 C$ and $\mathrm{O} 1 \cdots \mathrm{Cu} C$ interactions [the suffix C corresponds to the symmetry code $(1-x, 1-y, 1-z)$] to generate a sheet in the (100) plane, as shown in Fig. 2. These sheets are linked by pairs of $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds (Table 2), which link the $\mathrm{Cu}\left(\mathrm{H}_{2} \mathrm{Imda}\right)_{2}$ moieties into chains extending along [100] (Fig. 3). The combination of these hydrogen bonds and the $\mathrm{Cu}-\mathrm{O}$ bonds shown in Fig. 2 then develops a three-dimensional network.

Experimental

An aqueous solution (10 ml) of imidazole-4,5-dicarboxylic acid ($0.078 \mathrm{~g}, 0.5 \mathrm{mmol}$) was adjusted to a pH of 5 with a $1 M \mathrm{NaOH}$ solution at 333 K . The solution was then transferred to a 25 ml Teflonlined stainless steel vessel that containing $\mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2} \cdot 3 \mathrm{H}_{2} \mathrm{O}(0.182 \mathrm{~g}$ 0.75 mmol). The vessel was sealed and heated to 413 K for 12 d , and then cooled at a rate of $5 \mathrm{~K} \mathrm{~h}^{-1}$ to 373 K . The vessel was kept at 373 K for 10 h before being cooled to room temperature. Long blue parallelepiped crystals were separated by hand (yield 13\%).

Crystal data

$\left[\mathrm{Cu}\left(\mathrm{C}_{5} \mathrm{H}_{3} \mathrm{~N}_{2} \mathrm{O}_{4}\right)_{2}\right]$
$M_{r}=373.73$
Monoclinic, $P 2_{1} / n$
$a=7.112$ (1) \AA 。
$b=14.676$ (3) \AA
$c=12.145$ (2) \AA
$\beta=96.65$ (3) ${ }^{\circ}$
$V=1259.1$ (4) \AA^{3}
$Z=4$

Data collection

Rigaku R-AXIS RAPID imagingplate diffractometer
ω scans
Absorption correction: multi-scan (ABSCOR; Higashi, 1995)
$T_{\text {min }}=0.807, T_{\text {max }}=0.898$
4554 measured reflections

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.041$
$w R\left(F^{2}\right)=0.101$
$S=1.03$
3038 reflections
210 parameters
H -atom parameters constrained
$D_{x}=1.972 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
Cell parameters from 2318
\quad reflections
$\theta=3.2-28^{\circ}$
$\mu=1.79 \mathrm{~mm}^{-1}$
$T=293(2) \mathrm{K}$
Parallelepiped, blue
$0.30 \times 0.10 \times 0.06 \mathrm{~mm}$

3038 independent reflections
2318 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.024$
$\theta_{\text {max }}=28.0^{\circ}$
$h=0 \rightarrow 9$
$k=0 \rightarrow 19$
$l=-16 \rightarrow 15$

$$
\begin{aligned}
& w=1 /[\sigma^{2}\left(F_{o}^{2}\right)+(0.0536 P)^{2} \\
&+0.1086 P] \\
& \text { where } P=\left(F_{o}^{2}+2 F_{c}^{2}\right) / 3 \\
&(\Delta / \sigma)_{\max }=0.001 \\
& \Delta \rho_{\max }=0.56 \mathrm{e} \AA^{-3} \\
& \Delta \rho_{\min }=-0.38 \mathrm{e}^{-3}
\end{aligned}
$$

Table 1
Selected geometric parameters $\left(\AA^{\circ},{ }^{\circ}\right)$.

$\mathrm{Cu} 1-\mathrm{N} 13$	$1.982(3)$	$\mathrm{Cu} 1-\mathrm{O} 1$	$2.016(2)$
$\mathrm{Cu} 1-\mathrm{N} 3$	$1.992(2)$	$\mathrm{Cu} 1-\mathrm{O} 4^{\mathrm{i}}$	$2.305(2)$
$\mathrm{Cu} 1-\mathrm{O} 11$	$2.014(2)$	$\mathrm{Cu} 1-\mathrm{O} 1^{\mathrm{ii}}$	$3.090(2)$
			$83.93(9)$
$\mathrm{N} 13-\mathrm{Cu} 1-\mathrm{N} 3$	$97.68(10)$	$\mathrm{N} 3-\mathrm{Cu} 1-\mathrm{O} 1$	$93.64(8)$
$\mathrm{N} 13-\mathrm{Cu} 1-\mathrm{O} 11$	$83.90(9)$	$\mathrm{O} 11-\mathrm{Cu} 1-\mathrm{O} 1$	$161.07(9)$
$\mathrm{N} 3-\mathrm{Cu} 1-\mathrm{O} 11$	$172.26(10)$	$\mathrm{O} 1^{\mathrm{ii}}-\mathrm{Cu} 1-\mathrm{O} 4^{\mathrm{i}}$	
$\mathrm{N} 13-\mathrm{Cu} 1-\mathrm{O} 1$	$173.20(10)$		

Symmetry codes: (i) $x+\frac{1}{2},-y+\frac{3}{2}, z+\frac{1}{2}$; (ii) $-x+1,-y+1,-z+1$.

Table 2
Hydrogen-bond geometry $\left(\AA^{\circ},^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} 3-\mathrm{H} 3 \cdots \mathrm{O} 2$	0.82	1.82	$2.642(3)$	175
$\mathrm{O} 13-\mathrm{H} 13 \cdots \mathrm{O} 12$	0.82	1.85	$2.653(3)$	165
$\mathrm{~N} 1-\mathrm{H} 1 \cdots \mathrm{O}{ }^{\text {iii }}$	0.86	2.02	$2.837(3)$	158
${\mathrm{~N} 11-\mathrm{H} 11 \cdots \mathrm{O} 12^{\text {iii }}}^{\mathrm{C} 2-\mathrm{H} 2 \cdots \mathrm{O} 1^{\text {iii }}}$	0.86	2.02	$2.825(3)$	156
$\mathrm{C}^{\text {iii }}-\mathrm{H} 12 \cdots \mathrm{O} 11^{\text {iii }}$	0.93	2.48	$3.133(4)$	128

Symmetry code: (iii) $x-1, y, z$.

All H atoms were found in difference maps and subsequently allowed for in the refinements as riding atoms $[\mathrm{C}-\mathrm{H}=0.93 \AA$, $\mathrm{N}-\mathrm{H}=0.86 \AA, \mathrm{O}-\mathrm{H}=0.82 \AA$ and $\left.U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C}, \mathrm{O})\right]$.

Data collection: PROCESS-AUTO (Rigaku, 1998); cell refinement: PROCESS-AUTO; data reduction: TEXSAN (Molecular Structure Corporation \& Rigaku, 1999); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine
structure: SHELXL97 (Sheldrick, 1997) in WinGX (Farrugia, 1999); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: SHELXL97.

This work was supported by the Natural Science Foundation of China (grant No. 20301014) and the Innovation Foundation for Young Scientific Talents of Fujian Province of China (grant No. 2002 J004).

Supplementary data for this paper are available from the IUCr electronic archives (Reference: FG1804). Services for accessing these data are described at the back of the journal.

References

Allen, F. H. (2002). Acta Cryst. B58, 380-388.
Farrugia, L. (1999). J. Appl. Cryst. 32, 837-838.
Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.
Molecular Structure Corporation \& Rigaku (1999). TEXSAN. Version 1.10. MSC, 9009 New Trails Drive, The Woodlands, TX 77381-5209, USA, and Rigaku Corporation, Tokyo, Japan.
Rajendiran, T. M., Kirk, M. L., Setyawati, I. A., Caudle, M. T., Kampfa, J. W. \& Pecoraro, V. L. (2003). Chem. Commun. pp. 824-825.
Rigaku (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Shimizu, E., Kondo, M., Yumiko Fuwa, Y., Sarker, R. P., Miyazawa, M., Ueno, M., Naito, T., Maeda, K. \& Uchida, F. (2004). Inorg. Chem. Commun. 7, 1191-1194.
Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.
Wang, C. F., Gao, E. Q., He, Z. \& Yan, C. H. (2004). Chem. Commun. pp. 720721.

Yin, X., Tao, J., Wei, Z. B., Huang, R. B. \& Zheng, L. S. (2004). Eur. J. Inorg. Chem. pp. 125-133.

